Highest vectors of representations (total 20) ; the vectors are over the primal subalgebra. | g−6 | g−1 | −h5+h3 | h6 | h1 | g1 | g6 | g31 | g33 | g29 | g32 | g15 | g18 | g21 | g24 | g5 | g11 | g3 | g7 | g34 |
weight | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω1 | ω1 | ω1 | ω1 | ω2 | ω2 | ω2 | ω2 | ω3 | ω3 | ω3 | ω3 | ω1+ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −2ψ2−4ψ3 | −4ψ1+2ψ2 | 0 | 0 | 0 | 4ψ1−2ψ2 | 2ψ2+4ψ3 | ω1−2ψ1−2ψ2 | ω1+2ψ1−4ψ2 | ω1+2ψ2−2ψ3 | ω1+4ψ2+2ψ3 | ω2−2ψ1−2ψ3 | ω2+2ψ1−2ψ2−2ψ3 | ω2−2ψ1+2ψ2+2ψ3 | ω2+2ψ1+2ψ3 | ω3−4ψ2−2ψ3 | ω3−2ψ2+2ψ3 | ω3−2ψ1+4ψ2 | ω3+2ψ1+2ψ2 | ω1+ω3 |
Isotypical components + highest weight | V−2ψ2−4ψ3 → (0, 0, 0, 0, -2, -4) | V−4ψ1+2ψ2 → (0, 0, 0, -4, 2, 0) | V0 → (0, 0, 0, 0, 0, 0) | V4ψ1−2ψ2 → (0, 0, 0, 4, -2, 0) | V2ψ2+4ψ3 → (0, 0, 0, 0, 2, 4) | Vω1−2ψ1−2ψ2 → (1, 0, 0, -2, -2, 0) | Vω1+2ψ1−4ψ2 → (1, 0, 0, 2, -4, 0) | Vω1+2ψ2−2ψ3 → (1, 0, 0, 0, 2, -2) | Vω1+4ψ2+2ψ3 → (1, 0, 0, 0, 4, 2) | Vω2−2ψ1−2ψ3 → (0, 1, 0, -2, 0, -2) | Vω2+2ψ1−2ψ2−2ψ3 → (0, 1, 0, 2, -2, -2) | Vω2−2ψ1+2ψ2+2ψ3 → (0, 1, 0, -2, 2, 2) | Vω2+2ψ1+2ψ3 → (0, 1, 0, 2, 0, 2) | Vω3−4ψ2−2ψ3 → (0, 0, 1, 0, -4, -2) | Vω3−2ψ2+2ψ3 → (0, 0, 1, 0, -2, 2) | Vω3−2ψ1+4ψ2 → (0, 0, 1, -2, 4, 0) | Vω3+2ψ1+2ψ2 → (0, 0, 1, 2, 2, 0) | Vω1+ω3 → (1, 0, 1, 0, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | W18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 0 | 0 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω2 ω1−ω2+ω3 −ω1+ω3 ω1−ω3 −ω1+ω2−ω3 −ω2 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω1+ω3 −ω1+ω2+ω3 ω1+ω2−ω3 −ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω2−ω3 −ω1−ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −2ψ2−4ψ3 | −4ψ1+2ψ2 | 0 | 4ψ1−2ψ2 | 2ψ2+4ψ3 | ω1−2ψ1−2ψ2 −ω1+ω2−2ψ1−2ψ2 −ω2+ω3−2ψ1−2ψ2 −ω3−2ψ1−2ψ2 | ω1+2ψ1−4ψ2 −ω1+ω2+2ψ1−4ψ2 −ω2+ω3+2ψ1−4ψ2 −ω3+2ψ1−4ψ2 | ω1+2ψ2−2ψ3 −ω1+ω2+2ψ2−2ψ3 −ω2+ω3+2ψ2−2ψ3 −ω3+2ψ2−2ψ3 | ω1+4ψ2+2ψ3 −ω1+ω2+4ψ2+2ψ3 −ω2+ω3+4ψ2+2ψ3 −ω3+4ψ2+2ψ3 | ω2−2ψ1−2ψ3 ω1−ω2+ω3−2ψ1−2ψ3 −ω1+ω3−2ψ1−2ψ3 ω1−ω3−2ψ1−2ψ3 −ω1+ω2−ω3−2ψ1−2ψ3 −ω2−2ψ1−2ψ3 | ω2+2ψ1−2ψ2−2ψ3 ω1−ω2+ω3+2ψ1−2ψ2−2ψ3 −ω1+ω3+2ψ1−2ψ2−2ψ3 ω1−ω3+2ψ1−2ψ2−2ψ3 −ω1+ω2−ω3+2ψ1−2ψ2−2ψ3 −ω2+2ψ1−2ψ2−2ψ3 | ω2−2ψ1+2ψ2+2ψ3 ω1−ω2+ω3−2ψ1+2ψ2+2ψ3 −ω1+ω3−2ψ1+2ψ2+2ψ3 ω1−ω3−2ψ1+2ψ2+2ψ3 −ω1+ω2−ω3−2ψ1+2ψ2+2ψ3 −ω2−2ψ1+2ψ2+2ψ3 | ω2+2ψ1+2ψ3 ω1−ω2+ω3+2ψ1+2ψ3 −ω1+ω3+2ψ1+2ψ3 ω1−ω3+2ψ1+2ψ3 −ω1+ω2−ω3+2ψ1+2ψ3 −ω2+2ψ1+2ψ3 | ω3−4ψ2−2ψ3 ω2−ω3−4ψ2−2ψ3 ω1−ω2−4ψ2−2ψ3 −ω1−4ψ2−2ψ3 | ω3−2ψ2+2ψ3 ω2−ω3−2ψ2+2ψ3 ω1−ω2−2ψ2+2ψ3 −ω1−2ψ2+2ψ3 | ω3−2ψ1+4ψ2 ω2−ω3−2ψ1+4ψ2 ω1−ω2−2ψ1+4ψ2 −ω1−2ψ1+4ψ2 | ω3+2ψ1+2ψ2 ω2−ω3+2ψ1+2ψ2 ω1−ω2+2ψ1+2ψ2 −ω1+2ψ1+2ψ2 | ω1+ω3 −ω1+ω2+ω3 ω1+ω2−ω3 −ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω2−ω3 −ω1−ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−2ψ2−4ψ3 | M−4ψ1+2ψ2 | M0 | M4ψ1−2ψ2 | M2ψ2+4ψ3 | Mω1−2ψ1−2ψ2⊕M−ω2+ω3−2ψ1−2ψ2⊕M−ω1+ω2−2ψ1−2ψ2⊕M−ω3−2ψ1−2ψ2 | Mω1+2ψ1−4ψ2⊕M−ω2+ω3+2ψ1−4ψ2⊕M−ω1+ω2+2ψ1−4ψ2⊕M−ω3+2ψ1−4ψ2 | Mω1+2ψ2−2ψ3⊕M−ω2+ω3+2ψ2−2ψ3⊕M−ω1+ω2+2ψ2−2ψ3⊕M−ω3+2ψ2−2ψ3 | Mω1+4ψ2+2ψ3⊕M−ω2+ω3+4ψ2+2ψ3⊕M−ω1+ω2+4ψ2+2ψ3⊕M−ω3+4ψ2+2ψ3 | Mω1−ω2+ω3−2ψ1−2ψ3⊕Mω2−2ψ1−2ψ3⊕M−ω1+ω3−2ψ1−2ψ3⊕Mω1−ω3−2ψ1−2ψ3⊕M−ω2−2ψ1−2ψ3⊕M−ω1+ω2−ω3−2ψ1−2ψ3 | Mω1−ω2+ω3+2ψ1−2ψ2−2ψ3⊕Mω2+2ψ1−2ψ2−2ψ3⊕M−ω1+ω3+2ψ1−2ψ2−2ψ3⊕Mω1−ω3+2ψ1−2ψ2−2ψ3⊕M−ω2+2ψ1−2ψ2−2ψ3⊕M−ω1+ω2−ω3+2ψ1−2ψ2−2ψ3 | Mω1−ω2+ω3−2ψ1+2ψ2+2ψ3⊕Mω2−2ψ1+2ψ2+2ψ3⊕M−ω1+ω3−2ψ1+2ψ2+2ψ3⊕Mω1−ω3−2ψ1+2ψ2+2ψ3⊕M−ω2−2ψ1+2ψ2+2ψ3⊕M−ω1+ω2−ω3−2ψ1+2ψ2+2ψ3 | Mω1−ω2+ω3+2ψ1+2ψ3⊕Mω2+2ψ1+2ψ3⊕M−ω1+ω3+2ψ1+2ψ3⊕Mω1−ω3+2ψ1+2ψ3⊕M−ω2+2ψ1+2ψ3⊕M−ω1+ω2−ω3+2ψ1+2ψ3 | Mω3−4ψ2−2ψ3⊕Mω1−ω2−4ψ2−2ψ3⊕Mω2−ω3−4ψ2−2ψ3⊕M−ω1−4ψ2−2ψ3 | Mω3−2ψ2+2ψ3⊕Mω1−ω2−2ψ2+2ψ3⊕Mω2−ω3−2ψ2+2ψ3⊕M−ω1−2ψ2+2ψ3 | Mω3−2ψ1+4ψ2⊕Mω1−ω2−2ψ1+4ψ2⊕Mω2−ω3−2ψ1+4ψ2⊕M−ω1−2ψ1+4ψ2 | Mω3+2ψ1+2ψ2⊕Mω1−ω2+2ψ1+2ψ2⊕Mω2−ω3+2ψ1+2ψ2⊕M−ω1+2ψ1+2ψ2 | Mω1+ω3⊕M−ω2+2ω3⊕M−ω1+ω2+ω3⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1−2ω2+ω3⊕3M0⊕M−ω1+2ω2−ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω3⊕Mω2−2ω3⊕M−ω1−ω3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−2ψ2−4ψ3 | M−4ψ1+2ψ2 | 3M0 | M4ψ1−2ψ2 | M2ψ2+4ψ3 | Mω1−2ψ1−2ψ2⊕M−ω2+ω3−2ψ1−2ψ2⊕M−ω1+ω2−2ψ1−2ψ2⊕M−ω3−2ψ1−2ψ2 | Mω1+2ψ1−4ψ2⊕M−ω2+ω3+2ψ1−4ψ2⊕M−ω1+ω2+2ψ1−4ψ2⊕M−ω3+2ψ1−4ψ2 | Mω1+2ψ2−2ψ3⊕M−ω2+ω3+2ψ2−2ψ3⊕M−ω1+ω2+2ψ2−2ψ3⊕M−ω3+2ψ2−2ψ3 | Mω1+4ψ2+2ψ3⊕M−ω2+ω3+4ψ2+2ψ3⊕M−ω1+ω2+4ψ2+2ψ3⊕M−ω3+4ψ2+2ψ3 | Mω1−ω2+ω3−2ψ1−2ψ3⊕Mω2−2ψ1−2ψ3⊕M−ω1+ω3−2ψ1−2ψ3⊕Mω1−ω3−2ψ1−2ψ3⊕M−ω2−2ψ1−2ψ3⊕M−ω1+ω2−ω3−2ψ1−2ψ3 | Mω1−ω2+ω3+2ψ1−2ψ2−2ψ3⊕Mω2+2ψ1−2ψ2−2ψ3⊕M−ω1+ω3+2ψ1−2ψ2−2ψ3⊕Mω1−ω3+2ψ1−2ψ2−2ψ3⊕M−ω2+2ψ1−2ψ2−2ψ3⊕M−ω1+ω2−ω3+2ψ1−2ψ2−2ψ3 | Mω1−ω2+ω3−2ψ1+2ψ2+2ψ3⊕Mω2−2ψ1+2ψ2+2ψ3⊕M−ω1+ω3−2ψ1+2ψ2+2ψ3⊕Mω1−ω3−2ψ1+2ψ2+2ψ3⊕M−ω2−2ψ1+2ψ2+2ψ3⊕M−ω1+ω2−ω3−2ψ1+2ψ2+2ψ3 | Mω1−ω2+ω3+2ψ1+2ψ3⊕Mω2+2ψ1+2ψ3⊕M−ω1+ω3+2ψ1+2ψ3⊕Mω1−ω3+2ψ1+2ψ3⊕M−ω2+2ψ1+2ψ3⊕M−ω1+ω2−ω3+2ψ1+2ψ3 | Mω3−4ψ2−2ψ3⊕Mω1−ω2−4ψ2−2ψ3⊕Mω2−ω3−4ψ2−2ψ3⊕M−ω1−4ψ2−2ψ3 | Mω3−2ψ2+2ψ3⊕Mω1−ω2−2ψ2+2ψ3⊕Mω2−ω3−2ψ2+2ψ3⊕M−ω1−2ψ2+2ψ3 | Mω3−2ψ1+4ψ2⊕Mω1−ω2−2ψ1+4ψ2⊕Mω2−ω3−2ψ1+4ψ2⊕M−ω1−2ψ1+4ψ2 | Mω3+2ψ1+2ψ2⊕Mω1−ω2+2ψ1+2ψ2⊕Mω2−ω3+2ψ1+2ψ2⊕M−ω1+2ψ1+2ψ2 | Mω1+ω3⊕M−ω2+2ω3⊕M−ω1+ω2+ω3⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1−2ω2+ω3⊕3M0⊕M−ω1+2ω2−ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω3⊕Mω2−2ω3⊕M−ω1−ω3 |