Processing math: 100%
Subalgebra A13E16
85 out of 119
Computations done by the calculator project.

Subalgebra type: A13 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A12 .
Centralizer: 2A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A13
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, -1, 0), (0, 0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A13+A11 , A13+A21 , A13+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A13: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: g36, g2, g4
Positive simple generators: g36, g2, g4
Cartan symmetric matrix: (210121012)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (210121012)
Decomposition of ambient Lie algebra: Vω1+ω34Vω34Vω24Vω17V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+4ψ2+2ψ3V2ψ2+4ψ3Vω2+2ψ1+2ψ3Vω3+2ψ1+2ψ2Vω22ψ1+2ψ2+2ψ3Vω32ψ1+4ψ2Vω1+ω3V4ψ12ψ2Vω32ψ2+2ψ3Vω1+2ψ22ψ33V0Vω1+2ψ14ψ2Vω2+2ψ12ψ22ψ3V4ψ1+2ψ2Vω12ψ12ψ2Vω22ψ12ψ3Vω34ψ22ψ3V2ψ24ψ3
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 20) ; the vectors are over the primal subalgebra.g6g1h5+h3h6h1g1g6g31g33g29g32g15g18g21g24g5g11g3g7g34
weight0000000ω1ω1ω1ω1ω2ω2ω2ω2ω3ω3ω3ω3ω1+ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ24ψ34ψ1+2ψ20004ψ12ψ22ψ2+4ψ3ω12ψ12ψ2ω1+2ψ14ψ2ω1+2ψ22ψ3ω1+4ψ2+2ψ3ω22ψ12ψ3ω2+2ψ12ψ22ψ3ω22ψ1+2ψ2+2ψ3ω2+2ψ1+2ψ3ω34ψ22ψ3ω32ψ2+2ψ3ω32ψ1+4ψ2ω3+2ψ1+2ψ2ω1+ω3
Isotypic module decomposition over primal subalgebra (total 18 isotypic components).
Isotypical components + highest weightV2ψ24ψ3 → (0, 0, 0, 0, -2, -4)V4ψ1+2ψ2 → (0, 0, 0, -4, 2, 0)V0 → (0, 0, 0, 0, 0, 0)V4ψ12ψ2 → (0, 0, 0, 4, -2, 0)V2ψ2+4ψ3 → (0, 0, 0, 0, 2, 4)Vω12ψ12ψ2 → (1, 0, 0, -2, -2, 0)Vω1+2ψ14ψ2 → (1, 0, 0, 2, -4, 0)Vω1+2ψ22ψ3 → (1, 0, 0, 0, 2, -2)Vω1+4ψ2+2ψ3 → (1, 0, 0, 0, 4, 2)Vω22ψ12ψ3 → (0, 1, 0, -2, 0, -2)Vω2+2ψ12ψ22ψ3 → (0, 1, 0, 2, -2, -2)Vω22ψ1+2ψ2+2ψ3 → (0, 1, 0, -2, 2, 2)Vω2+2ψ1+2ψ3 → (0, 1, 0, 2, 0, 2)Vω34ψ22ψ3 → (0, 0, 1, 0, -4, -2)Vω32ψ2+2ψ3 → (0, 0, 1, 0, -2, 2)Vω32ψ1+4ψ2 → (0, 0, 1, -2, 4, 0)Vω3+2ψ1+2ψ2 → (0, 0, 1, 2, 2, 0)Vω1+ω3 → (1, 0, 1, 0, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g6
g1
Cartan of centralizer component.
h5+h3
h6
h1
g1
g6
g31
g17
g12
g7
g33
g13
g9
g3
g29
g20
g16
g11
g32
g14
g10
g5
g15
g19
g30
g23
g27
g24
g18
g22
g28
g26
g25
g21
g21
g25
g26
g28
g22
g18
g24
g27
g23
g30
g19
g15
g5
g10
g14
g32
g11
g16
g20
g29
g3
g9
g13
g33
g7
g12
g17
g31
Semisimple subalgebra component.
g34
g8
g35
g4
g2
g36
h4
h2
h6+2h5+3h4+2h3+2h2+h1
g2
2g4
g36
g35
g8
g34
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above00000ω1
ω1+ω2
ω2+ω3
ω3
ω1
ω1+ω2
ω2+ω3
ω3
ω1
ω1+ω2
ω2+ω3
ω3
ω1
ω1+ω2
ω2+ω3
ω3
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω2
ω1ω2+ω3
ω1+ω3
ω1ω3
ω1+ω2ω3
ω2
ω3
ω2ω3
ω1ω2
ω1
ω3
ω2ω3
ω1ω2
ω1
ω3
ω2ω3
ω1ω2
ω1
ω3
ω2ω3
ω1ω2
ω1
ω1+ω3
ω1+ω2+ω3
ω1+ω2ω3
ω2+2ω3
ω1+2ω2ω3
2ω1ω2
0
0
0
ω12ω2+ω3
ω22ω3
2ω1+ω2
ω1ω2+ω3
ω1ω2ω3
ω1ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ24ψ34ψ1+2ψ204ψ12ψ22ψ2+4ψ3ω12ψ12ψ2
ω1+ω22ψ12ψ2
ω2+ω32ψ12ψ2
ω32ψ12ψ2
ω1+2ψ14ψ2
ω1+ω2+2ψ14ψ2
ω2+ω3+2ψ14ψ2
ω3+2ψ14ψ2
ω1+2ψ22ψ3
ω1+ω2+2ψ22ψ3
ω2+ω3+2ψ22ψ3
ω3+2ψ22ψ3
ω1+4ψ2+2ψ3
ω1+ω2+4ψ2+2ψ3
ω2+ω3+4ψ2+2ψ3
ω3+4ψ2+2ψ3
ω22ψ12ψ3
ω1ω2+ω32ψ12ψ3
ω1+ω32ψ12ψ3
ω1ω32ψ12ψ3
ω1+ω2ω32ψ12ψ3
ω22ψ12ψ3
ω2+2ψ12ψ22ψ3
ω1ω2+ω3+2ψ12ψ22ψ3
ω1+ω3+2ψ12ψ22ψ3
ω1ω3+2ψ12ψ22ψ3
ω1+ω2ω3+2ψ12ψ22ψ3
ω2+2ψ12ψ22ψ3
ω22ψ1+2ψ2+2ψ3
ω1ω2+ω32ψ1+2ψ2+2ψ3
ω1+ω32ψ1+2ψ2+2ψ3
ω1ω32ψ1+2ψ2+2ψ3
ω1+ω2ω32ψ1+2ψ2+2ψ3
ω22ψ1+2ψ2+2ψ3
ω2+2ψ1+2ψ3
ω1ω2+ω3+2ψ1+2ψ3
ω1+ω3+2ψ1+2ψ3
ω1ω3+2ψ1+2ψ3
ω1+ω2ω3+2ψ1+2ψ3
ω2+2ψ1+2ψ3
ω34ψ22ψ3
ω2ω34ψ22ψ3
ω1ω24ψ22ψ3
ω14ψ22ψ3
ω32ψ2+2ψ3
ω2ω32ψ2+2ψ3
ω1ω22ψ2+2ψ3
ω12ψ2+2ψ3
ω32ψ1+4ψ2
ω2ω32ψ1+4ψ2
ω1ω22ψ1+4ψ2
ω12ψ1+4ψ2
ω3+2ψ1+2ψ2
ω2ω3+2ψ1+2ψ2
ω1ω2+2ψ1+2ψ2
ω1+2ψ1+2ψ2
ω1+ω3
ω1+ω2+ω3
ω1+ω2ω3
ω2+2ω3
ω1+2ω2ω3
2ω1ω2
0
0
0
ω12ω2+ω3
ω22ω3
2ω1+ω2
ω1ω2+ω3
ω1ω2ω3
ω1ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψ24ψ3M4ψ1+2ψ2M0M4ψ12ψ2M2ψ2+4ψ3Mω12ψ12ψ2Mω2+ω32ψ12ψ2Mω1+ω22ψ12ψ2Mω32ψ12ψ2Mω1+2ψ14ψ2Mω2+ω3+2ψ14ψ2Mω1+ω2+2ψ14ψ2Mω3+2ψ14ψ2Mω1+2ψ22ψ3Mω2+ω3+2ψ22ψ3Mω1+ω2+2ψ22ψ3Mω3+2ψ22ψ3Mω1+4ψ2+2ψ3Mω2+ω3+4ψ2+2ψ3Mω1+ω2+4ψ2+2ψ3Mω3+4ψ2+2ψ3Mω1ω2+ω32ψ12ψ3Mω22ψ12ψ3Mω1+ω32ψ12ψ3Mω1ω32ψ12ψ3Mω22ψ12ψ3Mω1+ω2ω32ψ12ψ3Mω1ω2+ω3+2ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω1+ω3+2ψ12ψ22ψ3Mω1ω3+2ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω1+ω2ω3+2ψ12ψ22ψ3Mω1ω2+ω32ψ1+2ψ2+2ψ3Mω22ψ1+2ψ2+2ψ3Mω1+ω32ψ1+2ψ2+2ψ3Mω1ω32ψ1+2ψ2+2ψ3Mω22ψ1+2ψ2+2ψ3Mω1+ω2ω32ψ1+2ψ2+2ψ3Mω1ω2+ω3+2ψ1+2ψ3Mω2+2ψ1+2ψ3Mω1+ω3+2ψ1+2ψ3Mω1ω3+2ψ1+2ψ3Mω2+2ψ1+2ψ3Mω1+ω2ω3+2ψ1+2ψ3Mω34ψ22ψ3Mω1ω24ψ22ψ3Mω2ω34ψ22ψ3Mω14ψ22ψ3Mω32ψ2+2ψ3Mω1ω22ψ2+2ψ3Mω2ω32ψ2+2ψ3Mω12ψ2+2ψ3Mω32ψ1+4ψ2Mω1ω22ψ1+4ψ2Mω2ω32ψ1+4ψ2Mω12ψ1+4ψ2Mω3+2ψ1+2ψ2Mω1ω2+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2Mω1+2ψ1+2ψ2Mω1+ω3Mω2+2ω3Mω1+ω2+ω3M2ω1ω2Mω1+ω2ω3Mω12ω2+ω33M0Mω1+2ω2ω3Mω1ω2+ω3M2ω1+ω2Mω1ω2ω3Mω22ω3Mω1ω3
Isotypic characterM2ψ24ψ3M4ψ1+2ψ23M0M4ψ12ψ2M2ψ2+4ψ3Mω12ψ12ψ2Mω2+ω32ψ12ψ2Mω1+ω22ψ12ψ2Mω32ψ12ψ2Mω1+2ψ14ψ2Mω2+ω3+2ψ14ψ2Mω1+ω2+2ψ14ψ2Mω3+2ψ14ψ2Mω1+2ψ22ψ3Mω2+ω3+2ψ22ψ3Mω1+ω2+2ψ22ψ3Mω3+2ψ22ψ3Mω1+4ψ2+2ψ3Mω2+ω3+4ψ2+2ψ3Mω1+ω2+4ψ2+2ψ3Mω3+4ψ2+2ψ3Mω1ω2+ω32ψ12ψ3Mω22ψ12ψ3Mω1+ω32ψ12ψ3Mω1ω32ψ12ψ3Mω22ψ12ψ3Mω1+ω2ω32ψ12ψ3Mω1ω2+ω3+2ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω1+ω3+2ψ12ψ22ψ3Mω1ω3+2ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω1+ω2ω3+2ψ12ψ22ψ3Mω1ω2+ω32ψ1+2ψ2+2ψ3Mω22ψ1+2ψ2+2ψ3Mω1+ω32ψ1+2ψ2+2ψ3Mω1ω32ψ1+2ψ2+2ψ3Mω22ψ1+2ψ2+2ψ3Mω1+ω2ω32ψ1+2ψ2+2ψ3Mω1ω2+ω3+2ψ1+2ψ3Mω2+2ψ1+2ψ3Mω1+ω3+2ψ1+2ψ3Mω1ω3+2ψ1+2ψ3Mω2+2ψ1+2ψ3Mω1+ω2ω3+2ψ1+2ψ3Mω34ψ22ψ3Mω1ω24ψ22ψ3Mω2ω34ψ22ψ3Mω14ψ22ψ3Mω32ψ2+2ψ3Mω1ω22ψ2+2ψ3Mω2ω32ψ2+2ψ3Mω12ψ2+2ψ3Mω32ψ1+4ψ2Mω1ω22ψ1+4ψ2Mω2ω32ψ1+4ψ2Mω12ψ1+4ψ2Mω3+2ψ1+2ψ2Mω1ω2+2ψ1+2ψ2Mω2ω3+2ψ1+2ψ2Mω1+2ψ1+2ψ2Mω1+ω3Mω2+2ω3Mω1+ω2+ω3M2ω1ω2Mω1+ω2ω3Mω12ω2+ω33M0Mω1+2ω2ω3Mω1ω2+ω3M2ω1+ω2Mω1ω2ω3Mω22ω3Mω1ω3

Semisimple subalgebra: W_{18}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (275.00, 350.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (250.00, 400.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (225.00, 350.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 448 arithmetic operations while solving the Serre relations polynomial system.